Publications

 

 

Latest Preprints:

 

Selected Publications:

 

  • Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov and E. P. Xing, Controllable Text Generation, The 34th International Conference on Machine Learning. (ICML 2017).

2022

  • Z. Shen, Z. Liu and E. P. Xing, Sliced Recursive Transformer , Proceeding of the 18th European Conference of Computer Vision, 2022. (ECCV 22).
  • M. Zhou, Z. Li, B. Tan, G. Zeng, W. Yang, X. He, Z. Ju, S. Chakravorty, S. Chen, X. Yang, Y. Zhang, Q. Wu, Z. Yu, K. Xu, E. P. Xing, and P. Xie, On the Generation of Medical Dialogs for COVID-19, Proceedings of The 59th Annual Meeting of the Association for Computational Linguistics, 2021. (ACL ’21).
  • B. Tan, Z. Yang, M. AI-Shedivat, E. P. Xing, Z. Hu, Progressive Generation of Long Text, The 2021 Conference of the North American Chapter of the Association for Computational Linguistics. (NAACL ’21).
  • S. Lin, W. Wang, Z. Yang, X. Liang, F. F. Xu, , E. P. Xing, and Z. Hu Data-to-Text Generation with Style Imitation, Proceeding of the 2020 Conference on Empirical Methods on Natural Language Processing. (EMNLP 2020).
  • Z. Liu, G. Ding, A. Bukkittu, M. Gupta, P. Gao, A. Ahmed, S. Zhang, X. Gao, S. Singhavi, L. Li, W. Wei, Z. Hu, H. Shi, X. Liang, T. Mitamura, E. Xing and Z. Hu. A Data-Centric Framework for Composable NLP Workflows, Proceeding of the 2020 Conference on Empirical Methods on Natural Language Processing. (EMNLP 2020 Demo).
  • X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and E. P. Xing Learning Sparse Nonparametric DAGs, Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, 2020. (AISTATS 20)
  • Y. Li, X. Liang, Z. Hu, Y. Chen, and E. P. Xing, Graph Transformer, Proceedings of Seventh International Conference on Learning Representations (ICLR 2019).

2018

  • J. Oliva, A. Dubey, M. Zaheer, B. Poczos, R. Salakhutdinov, E. P. Xing and J. Schneider Transformation Autoregressive Networks, Proceedings of the 35th International Conference on Machine Learning (ICML ’18)
  • L. Lee, E. Parisotto, D. S. Chaplot, E. P. Xing and R. Salakhutdinov Gated Path Planning Networks, Proceedings of the 35th International Conference on Machine Learning (ICML ’18)
  • Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, On Unifying Deep Generative Models, Proceedings of 6th International Conference on Learning Representations (ICLR’18)

2017

  • S. Lee, N. Gornitz, E. P. Xing, D. Heckerman, C. Lippert Ensembles of Lasso Screening Rules, IEEE Transaction on Pattern Analysis and Machine Intelligence, 2017 (10.1109/TPAMI.2017.2765321)

  • H. Zhang, Z. Deng, X. Liang, L. Yang, S. Xu, J. Zhu, and E. P. Xing, Structured Generative Adversarial Networks, Proceedings of Advances in Neural Information Processing Systems 31 (NIPS ’17). (Recipient of the Nvidia Pioneering Research Award)
  • Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov and E. P. Xing, Controllable Text Generation, The 34th International Conference on Machine Learning. (ICML 2017).
  • X. Liang, L. Lin, X. Shen, J. Feng, S. Yan and E. P. Xing, Interpretable Structure-Evolving LSTM, Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017).

2016

  • A. Wilson, Z. Hu, R. Salakhudinov and E. P. Xing Deep Kernel Learning, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. (AISTATS 2016). [Supplemental Material]
  • A. Dubey, J. Oliva, A. Wilson, E. P. Xing, B. Poczos, and J. Schneider, Bayesian Nonparametric Kernel-Learning, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. (AISTATS 2016).

2015

  • A. Wilson, C. Lucas, C. Dann and E. P. Xing, The Human Kernel, Advances in Neural Information Processing Systems 29 (eds. Daniel Lee and Masashi Sugiyama), MIT Press, 2015. (NIPS 2015).
  • Z. Hu, P. Huang, Y. Deng, Y. Gao and E. P. Xing, Entity Hierarchy Embedding, 53rd Annual Meeting of the Association for Computational Linguistics. (ACL 2015).
  • J. Oliva, W. Neiswanger, B. Poczos, E. P. Xing and J. Schneider, Fast Function to Function Regression, Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics. (AISTATS 2015).

2014

  • J. B. Oliva, W. Neiswanger, B. Poczos, J. Schneider and E. P. Xing, Fast Distribution To Real Regression, Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS 2014).

2013

2012

2011

  • J. Zhu and E. P. Xing, Sparse Topical Coding, Proceedings of the 27th International Conference on Conference on Uncertainty in Artificial Intelli- gence (UAI 2011).
  • A. Ahmed, Q. Ho, J. Eisenstein, E. P. Xing, A. Smola and C. H. Teo, Unified Analysis of Streaming News, Proceedings of the International World Wide Web Conference (WWW 2011).

2010

B. Zhao, L. Fei-Fei and E. P. Xing, Image Segmentation with Topic Random Fields, Proceeding of the 12th European Conference of Computer Vision (ECCV 2010).
X. Chen, Q. Lin, S. Kim, J. Pena, J. G. Carbonell and E. P. Xing, An Efficient Proximal Gradient Method for General Structured Sparse Learning, Manuscript, arXiv:1005.4717, communicated May 2010.
X. Chen, S. Kim, Q. Lin, J. G. Carbonell and E. P. Xing, Graph-Structured Multi-task Regression and an Efficient Optimization Method for General Fused Lasso, Manuscript, arXiv:1005.3579, communicated May 2010.

2009

2008

  • E. Airoldi, D. Blei, S. Fienberg, and E. P. Xing, Mixed Membership Stochastic Blockmodel, Journal of Machine Learning Research, 9(Sep):1981–2014, 2008.
    A shorter version of this paper appears in Proceeding of the 22nd Neural Information Processing Systems, (NIPS 2008).
  • A. F.T. Martins, D. Das, N. A. Smith, and E. P. Xing, Stacking Dependency Parser, Proceedings of Conference on Empirical Methods in Natural Language Processing, (EMNLP 2008).
  • A. Martins, M. Figueiredo, P. Aguiar, N. A. Smith and E. P. Xing, Nonextensive Entropic Kernels, Proceedings of the 25th International Conference on Machine Learning (ICML 2008). (A longer version is available soon in CMU-MLD Technical Report 08-106 with the same title.)
  • W. Wu and E. P. Xing, A Survey of cDNA Microarray Normalization and a Comparison by k-NN Classification, in Methods in Microarray Normalization (Ed. S. Phillip), CRC Press. p81-120, 2008.

2007

2006

  • F. Guo, W. Fu, Y. Shi and E. P. Xing, Reverse engineering temporally rewiring gene networks, The NIPS workshop on New Problems and Methods in Computational Biology (NIPS2006).

  • E.M. Airoldi, D.M. Blei, S.E. Fienberg, E.P. Xing, Latent mixed-membership allocation models of relational and multivariate attribute data, Valencia & ISBA Joint World Meeting on Bayesian Statistics (2006).

2004

  • E.P. Xing, R. Sharan and M.I Jordan, Bayesian Haplotype Inference via the Dirichlet Process. Proceedings of the 21st International Conference on Machine Learning (ICML2004),  (eds. Greiner and Schuurmans), ACM Press, 879-886, [ps]. An earlier version of this paper also appeared as a book chapter in Lecture Notes in Bioinformatics, Special issue for 2nd RECOMB Satellite Workshop on Computational Methods for SNPs and Haplotypes, 2004. (ps).

2003

2002

2001

  • E.P. Xing, C. Kulikowski, I. Muchnik, I. Dubchak, D. Wolf, S. Spengler and M. Zorn, Analysis of ribosomal RNA sequences by combinatorial clustering, Proceedings, The Seventh International Conference on Intelligence Systems for Molecular Biology (ISMB99), (Eds. T. Lengauer et al.) AAAI/MIT Press, Menlo Park, CA. P. 287-296, 1999.